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Motivation

Usually QFT focuses on time-ordered (Feynman) path integrals

QFT has a lot more correlation functions than the time-ordered ones:

〈Ô1(t1) · · · Ôn(tn)〉

−→ n! time orderings

t

Seem to be very relevant for black holes, many body physics,...

I Dissipation, chaos, scrambling,... Schwinger, Keldysh; Feynman–Vernon, ’60s

(Maldacena–)Shenker–Stanford ’15

Roberts–Yoshida ’16, Sekino–Susskind ’08

Yunger Halpern ’17,...

I Generalized fluctuation relations

I Usually about QI-theoretic ideas
(entanglement, complexity, circuits...)

Just beginning to understand the relevant physics



OTO contours

Convenient way to represent n-point function with generic time
ordering is the k-OTO contour

〈Ô4(t4)Ô1(t1)Ô3(t3)Ô2(t2)〉 =

t4 t3 t2 t1

I Feynman (time-ordered) correlators:

I ‘Schwinger-Keldysh’ contour (k = 1):



OTO contours

Effectively have 2k copies of every operator:

Ô −→ O1R , O1L , O2R , O2L , . . . , OkR , OkL

−1R→

−2R→

−3R→

← 1L−

← 2L−

← 3L−

Zk−OTO[JαR,JαL] = Tr
{
· · ·U†[J1L]U [J1R] ρ U†[JkL]U [JkR] · · ·

}
I Number of n-point functions from k-OTO contour: (2k)n

I k = bn+1
2 c allows representation of all n! n-point functions



Redundancies

Zk−OTO[JαR,JαL] = Tr
{
· · ·U †[J1L]U [J1R] ρ U †[JkL]U [JkR] · · ·

}
I Not every n-point function generated from Zk is actually k-OTO:

t3

t1

t4

t2

= 〈4123〉 =

t3

t1t4

t2

I Here: proper OTO number of 〈4123〉 is q = 1

Such relations eventually reduce (2k)n −→ n! (k ∼ bn+1
2 c)



Largest-time equation

Refer to these relations as largest-time equations:

=

⇒ 〈Tk Oα1(t1) · · ·(OpR − OpL) (ti)· · ·Oαn(tn)〉 = 0

if ti is largest time

(c.f., ’t Hooft–Veltman ’74)

Similarly: smallest time equations

=



Some counting

Can do this analysis more carefully and figure out gn,q and h
(q)
n,k in

n! =

bn+1
2 c∑

q=1

gn,q , (2k)n =

bn+1
2 c∑

q=1

gn,q h
(q)
n,k

I n! = number of n-point functions

I gn,q = number of proper q-OTO n-point functions

I (2k)n = number of n-point functions naively generated by Zk−OTO

I h
(q)
n,k = number of ways to represent any q-OTO n-point function

on a k-OTO contour
FH–Loganayagam–Narayan–Rangamani ’17



Thermal states



Thermal states: KMS condition
Take ρinitial = ρβ ≡ e−βH. KMS condition:

Tr
(
ρβ Ô1(t1) · · · Ôn−1(tn−1)Ôn(tn)

)
= Tr

(
ρβ Ôn(tn − iβ)Ô1(t1) · · · Ôn−1(tn−1)

)

= e−iβ
d
dtn

1R

kL

I Relates
〈O1 · · ·On〉β ∼ 〈OnO1 · · ·On−1〉β ∼ 〈On−1OnO1 · · ·On−2〉β ∼ . . .

I These relations are k-OTO n-point fluctuation-dissipation
relations, generalizing the well-known statement for n = 2:

〈{A(t), B(0)}〉 = coth

(
− iβ∂t

2

)
〈[A(t), B(0)]〉

I For n-point correlators: n!− (n− 1)! such relations with “more
(anti-)commutators and more coth’s” FH–Loganayagam–Narayan–Nizami–Rangamani ’17



Questions

Is this just combinatorics, or is there physics?

Q: What physics does a “proper q-OTO n-point function”
describe?

The path integral representation Zk has a large redundancy!
I But it’s useful (e.g., for setting up effective field theory)

Q: What’s an efficient way to describe the redundancies
(beyond counting them)?
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Quantum chaos: 2-OTO 4-point function

2-OTO 4-point function:

〈W (t)Z(0)W (t)Z(0)〉β
〈WW 〉β 〈ZZ〉β

∼ 1−# eλL(t−t∗)

I Overlap between |W (t)Z(0)〉 and |Z(0)W (t)〉
I λL quantifies quantum chaos (scrambling time t∗ ∼ β

2π logN)

Kitaev ’14

(Maldacena–)Shenker–Stanford ’13-’15

I Chaos bound: λL ≤ 2π
β

I Time-ordered correlators would not behave like this, e.g.,

〈W (t)W (t)Z(0)Z(0)〉β
〈WW 〉β 〈ZZ〉β

∼ 1 for t� β

2π

Can extract the connected piece using a commutator:

〈W (t)[Z(0),W (t)]Z(0)〉β
〈WW 〉β 〈ZZ〉β

∼ eλL(t−t∗)
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The Schwarzian theory

Q: Do higher-point OTOCs contain any more information about chaos?

To answer this, we [FH–Rozali ’17] studied the “Schwarzian theory”:

S = − 1

κ2

ˆ
du

[
−1

2

(
t′′(u)

t′(u)

)2

+

(
t′′(u)

t′(u)

)′]
+ Smatter

The time reparameterization mode t(u) describes:
I AdS2 dilaton gravity [Maldacena–Stanford–Yang ’16, Jensen ’16, Engelsoy–Mertens–Verlinde ’16, ...]
I Low energy dynamics of the SYK model [Maldacena–Stanford ’16, ...]

This theory is maximally chaotic, i.e., λL = 2π
β .



Application: k-OTO scrambling [FH–Rozali ’17]

Result: there exist proper k-OTO 2k-point functions with...

I ... exponential growth until t
(k)
∗ ∼ (k − 1)t∗

I ... Lyapunov exponent same as for 4-point function: λ
(k)
L = λL = 2π

β

〈V1[V2, V1][V3, V2][V4, V3] · · · [Vk, Vk−1]Vk〉conn.

〈V1V1〉 · · · 〈VkVk〉
∼ O(1)× eλL[(t1−tk)−(k−1)t∗]

I These correlators start off even smaller
(at O( 1

Nk−1 )), so they can grow for
longer.

I Interpretation: measure the scrambling of
increasingly fine-grained quantum
information c.f., Roberts–Yoshida ’16,

Cotler–Hunter-Jones–Liu–Yoshida ’17,...
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Consider 1-OTO path integrals
(aka Schwinger-Keldysh formalism)

There might well be k-OTO generalizations of many statements.



A different perspective

Mixed state can be purified by doubling Hilbert space: H → HL ⊗HR
Schwinger-Keldysh path integral describes evolution of mixed state ρ:

ZSK [JR,JL] = Tr
{
U [JR] ρU†[JL]

}
Real time dynamics of mixed states is very rich: open systems

I Lorentzian dynamics (possibly far from equilibrium)

I Dissipation, entropy, “information loss”,...



Entropy

Coarse-grained entropy:

I Low energy fluctuations dissipate (UV/IR correlations)

I Subject to ∆S ≥ 0

I Emergent entropic arrow of time: ‘looks’ non-unitary

I Underlying microscopic QFT is
unitary

I Clash of low-energy effective
field theory and unitarity

Q: Can we use formal insights from OTO path integrals to learn
something about the emergence of entropy and dissipation?



I’ll now try to motivate that redundancies in the Schwinger-Keldysh
path integral description can be encoded by:

I Increasing the field content even further, and
I Imposing an NT = 2 superalgebra symmetry structure.

Implementing this in an effective field theory of thermal states
(hydrodynamics) will lead to a Wilsonian QFT picture of coarse
grained entropy.



A consequence of unitarity

The redundancies in OTO contour representation are really a manifestation
of unitarity (U [J ]U†[J ] = 1):

Z1[JR,JL] = Tr
{
U [JR] ρ U†[JL]

}
Z1[JR = JL ≡ J ] = Tr (ρ) (“localization”)

The latter is still a theory of difference operators:

ˆ
JR OR − JL OL

JR=JL≡J−→
ˆ
J (OR − OL)

⇒ vanishing of difference operator correlators:

〈TC O(1)
diff · · ·O

(n)
diff 〉 = 0 (Odiff ≡ OR−OL) (∗)



Unitarity and cohomology

〈TC O(1)
diff · · ·O

(n)
diff 〉 = 0 (Odiff ≡ OR−OL) (∗)

Proposal [FH–Loganayagam–Rangamani ’15] :
(∗) happens because Odiff is trivial element of a BRST cohomology

I I.e., we want to write: Odiff = QBRST(OG) = QBRST(OG)

I (∗) would then be a (topological) symmetry statement

I OG,OG will have to be ghost/anti-ghost

Compare with topological QFT (or gauge theory):

I characterize topological operators (or pure gauge states) using
nilpotent, Grassmann-odd BRST charges: QBRST(...), QBRST(...)

I BRST cohomology characterizes physical states

I correlators of BRST-exact fields vanish



Universal Schwinger-Keldysh supergeometry

SK cohomology: lift every operator O to a BRST multiplet
{OR,OL,OG,OḠ} with (OR − OL) = QSK (OḠ) = QSK (OG)

I This is in a sense a covariant SK formalism
I Usual SK theory is a gauge fixed version (OG = OḠ = 0)

Trick: quadrupling of operator algebra ⇔ operator superalgebra

O̊ = OR+OL
2

+ θO
G

+ θ̄OG
+θ̄θ (OR − OL) θ2 = θ̄2 = 0

QSK
QSK

QSK
QSK

I Q
SK
∼ ∂θ̄ and Q

SK
∼ ∂θ

I Super-translation invariance ↔ BRST symmetry ↔ unitarity

unitarity of SK theory ⇒ correlators of BRST-exact operators vanish

FH–Loganayagam–Rangamani ’16, Geracie–FH–Loganayagam–Narayan–Ramirez–Rangamani ’17
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Trick: quadrupling of operator algebra ⇔ operator superalgebra

O̊ = OR+OL
2

+ θO
G

+ θ̄OG
+θ̄θ (OR − OL) θ2 = θ̄2 = 0

QSK
QSK

QSK
QSK

I Q
SK
∼ ∂θ̄ and Q

SK
∼ ∂θ

I Super-translation invariance ↔ BRST symmetry ↔ unitarity

unitarity of SK theory ⇒ correlators of BRST-exact operators vanish

FH–Loganayagam–Rangamani ’16, Geracie–FH–Loganayagam–Narayan–Ramirez–Rangamani ’17



Features of Schwinger-Keldysh QFT

Unitarity leads to constraints in SK path integral

Respecting these constraints is equivalent to
imposing a certain BRST symmetry {QSK ,QSK}
Implement by lifting to operator super-algebra and
work in superspace: QSK ∼ ∂θ̄ , QSK ∼ ∂θ



Thermal states

Consequence of KMS condition:

〈TC Õdiff(t1) · · · Õdiff(tn)〉 = 0

where Õdiff(t) ≡ OR(t)− OL(t− iβ)

= e−iβ
d
dtn

1R

kL



Thermal states

Consequence of KMS condition:

〈TC Õdiff(t1) · · · Õdiff(tn)〉 = 0

where Õdiff(t) ≡ OR(t)− OL(t− iβ)

I Can again encode this by setting Õdiff = Q
KMS

(...) = Q
KMS

(...)
on the same field content as before

I {Q
SK
,Q

SK
,Q

KMS
,Q

KMS
} generate NT = 2 superalgebra

Vafa–Witten ’94

Dijkgraaf–Moore ’97

FH–Loganayagam–Rangamani ’15

{Q
KMS

,Q
SK
} = {Q

KMS
,Q

SK
} = ∆β

F All other commutators vanish

F ∆β ≡ (1− e−iβ∂t) roughly measures thermal fluctuations

I Formally: as if ∆β was generator of (gauge) group action

F “Equivariant cohomology”: would tell us how to be covariant w.r.t. ∆β

F At high temperatures (∆β ≈ i β ∂t): algebra would describe a gauge
theory of thermal time translations



Features of Schwinger-Keldysh QFT

Unitarity leads to constraints in OTO path integral

Respecting these constraints is equivalent to
imposing a certain BRST symmetry {QSK ,QSK}
Implement by lifting to operator super-algebra and
work in superspace: QSK ∼ ∂θ̄ , QSK ∼ ∂θ

KMS condition leads to further constraints

Can be imposed by “covariantizing” the BRST
structure w.r.t. operators such as
∆β = 1− e−iβ∂t ≈ iβ∂t

⇒ NT = 2 symmetry algebra of thermal translations
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Hydrodynamics

Hydrodynamics: effective field theory of low energy dynamics
I long wavelength fluctuations over a thermal state
I universal framework for wide variety of systems
I old subject, phenomenology well understood

Holography: strongly
coupled hydrodynamics
of CFTd is dual to
gravitational physics of
large AdSd+1 black holes



Proposal for EFT in local equilibrium

(1) Take system in local equilibrium with effective degrees of freedom Φ

(2) Introduce superspace xI = (xa, θ, θ̄)

(3) Lift fields to superfields:

Φ̊ =
ΦR + ΦL

2
+ θ [ΦḠ + . . .] + θ̄ [ΦG + . . .] + θ̄θ [(ΦR − ΦL) + . . .]

(4) Impose NT = 2 supersymmetry with gauge group generator:

∆β = 1− e−iβ∂t −→ iβ∂t (βω � 1)

⇒ gauge (super-)field ÅI and covariant derivatives D̊I = ∂I + (ÅI , · )

(5) Write most general effective actions with these fields and symmetries:

SSK =

ˆ
ddx dθ dθ̄ L(Φ̊, ÅI , D̊I)

(6) De-align sources JR
L
→ J ± 1

2 J̃



Spacetime picture with U(1)T

βµ ≈ βδµt

Gauge ‘thermal diffeomorphisms’ £β −→ U(1)T symmetry
I Like local Euclidean periodicity

Spacetime carries 1-diml. U(1)T fibres (∼ thermal direction)
I Like a local Euclidean thermal circle

Spatial slice: a section M/U(1)T
I Like local Kaluza-Klein reduction



Effective field theory of hydrodynamics
Hydrodynamics is a theory of currents:

T ab[T (x), ua(x), gab(x)] = ε uaub + p (gab + uaub) + T ab(1) + T ab(2) + . . .

JaS [T (x), ua(x), gab(x)] = s ua + JaS,(1) + JaS,(2) + . . .

I Infinite number of terms, all explicitly constructed and classified
FH–Loganayagam–Rangamani ’15

I Second law ∇aJaS ≥ 0 gives very non-trivial constraints (e.g. η, ζ ≥ 0)

Theorem [FH–Loganayagam–Rangamani, ’15 & w.i.p.]

The most general hydro effective action with NT = 2 symmetry of thermal
translations (+ diff.invariance + CPT) describes:

. All hydrodynamic {T ab, JaS} at all orders in derivative expansion, which are
consistent with 2nd law

. No {T ab, JaS} inconsistent with second law

. Fluctuations (Schwinger-Keldysh difference fields)

. ...
see also: Crossley-Glorioso-Liu ’15, Jensen-Pinzani–Fokeeva–Yarom ’17
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Entropy inflow
FH–Loganayagam–Rangamani ’18

Jensen–Marjieh–Pinzani-Fokeeva–Yarom ’18

The U(1)T symmetry Noether current is the superspace free energy
current N I = JIS + T IJβJ (zI = (σa, θ, θ̄))

I Familiar from stationary black holes: Wald entropy is a Noether charge

I Being a symmetry current in superspace, it is super-conserved:

0 = DIN I ≡ DaNa︸ ︷︷ ︸
≥0

(2nd law)

+DθNθ +Dθ̄N θ̄︸ ︷︷ ︸
≤0

+ SK ghosts

I Inflow mechanism for entropy “restores” unitarity:

dissipative
system

σa
∆S > 0

θ, θ̄
directions

∆S < 0

total: (∆S){xµ} + (∆S){θ,θ̄} = 0

(upto ghosts and fluctuations)

Bonus: Fθθ̄ multiplies everything dissipative and should be CPT invariant.
A CPT breaking 〈Fθθ̄〉 = −i serves as an order parameter for dissipation
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Real time EFT: summary

Step 1: Identified symmetry principles in OTO path integrals,
which encode unitarity and KMS condition

Step 2: Proposed a way to implement these symmetries in
near-equilibrium EFT

I Cohomological (susy) structure with U(1)T gauge theory of entropy

Step 3: Check this proposal in examples

I Brownian motion: detailed completion of a well-known story

I Hydrodynamics: will provide very non-trivial check (reproduce
complete solution and classification of hydrodynamic transport)

I What about gravity?



Summary

OTOCs provide rich set of QFT observables.

We identified a particular set of k-OTO 2k-point functions, which can
be computed in the Schwarzian theory. They provide a hierarchy of
increasingly fine grained measures of quantum scrambling.

Constraints on the SK path integral from unitarity can be phrased as
a topological BRST symmetry.

With further constraints from the KMS condition, find an NT = 2
symmetry structure of thermal translations.

In the long-wavelength limit such a symmetry principle constrains
dissipative effective actions in precisely the right way

I Reproduce classification of hydrodynamics

I Inflow mechanism for hydrodynamic entropy



Further Details



Toy model: Langevin dynamics

Consider Brownian motion of particle at x(t) in viscous medium:

−Eom ≡ m d2x

dt2
+
∂U

∂x
+ ν

dx

dt
= N

Martin-Siggia-Rose (MSR) construction:

[dx]

ˆ
[dN] δ(Eom + N) det

(
δEom

δx

)
ei SGaussian noise[N]

= [dx]

ˆ
[df ][dψ][dψ] exp i

ˆ
dt

(
f Eom + i ν f2 + ψ

(
δEom

δx

)
ψ

)

Can write this in terms of NT = 2 supercharges Q, Q, implementing the
algebras of before:

= [dx]

ˆ
[df ][dψ][dψ] exp i

ˆ
dt

{
Q ,
[
Q ,

m

2

(
dx

dt

)2

− U(x)− i ν ψψ
]}∣∣∣∣gauge

fixed



Toy model: Langevin dynamics

Can make susy manifest by working in superspace:

x̊ = x + θ ψ + θ̄ ψ + θθ̄ f

Q = ∂θ

Q = ∂θ̄

ˆ
dt

{
Q ,
[
Q ,

m

2

(
dx

dt

)2

− U(x)− i ν ψψ
]}∣∣∣∣gauge

fixed

=

ˆ
dt dθ dθ̄

(
m

2

(
dx̊

dt

)2

− U (̊x)− i νDθx̊ Dθ̄x̊
)∣∣∣∣gauge

fixed

I Taking the superspace and U(1)T seriously, we could have guessed this
action immediately!

I Ghost bilinear term responsible for dissipation



Toy model: Langevin dynamics

Equation of motion for x from this action:

m
d2x

dt2
+
∂U(x)

∂x
+ i 〈Fθ̄θ〉 ν

dx

dt
= 2 i ν f

I 〈Fθ̄θ〉 = −i: order parameter for dissipation

I This spontaneously breaks CPT

I Supersymmetry Ward identity ⇔ Jarzynski relation:〈
e−β∆W

〉
= e−β∆F ⇒ 〈∆W 〉 ≥ ∆F

. ∆F = difference of free energies between initial and final state

. 〈· · · 〉: statistical average for going from state A→ B

. ∆W =
´ tB
tA

dt ∂U(x(t),t)
∂t

= total work done

Jarzynski ’97

Crooks ’98



Eightfold classification of hydrodynamic transport

Theorem: The eightfold way of hydrodynamic transport

. There are eight classes of {Tµν , JµS} consistent with ∇µJµS & 0.

. All of them can be constructed easily at all orders in ∇µ.

. Constitutive relations not produced by this algorithm, are forbidden
by second law (Class HF ).

FH-Loganayagam-Rangamani ’14 ’15

C
ρ(µν)(αβ)
N [βµ, gµν ]

´ √
−g L[βµ, gµν ]

(finite)

(finite)

´ √
−g L[βµ, gµν ]|equil.

(finite)
N [(µν)(αβ)][βµ, gµν ]

N ((µν)(αβ))[βµ, gµν ]



Generalized fluctuation relations

Fluctuation-dissipation theorem for 2-point functions:

〈{O1(t1),O2(t2)}〉β = coth

(
− iβ

2

d

dt2

)
〈[O1(t1),O2(t2)]〉β

KMS condition gives FD theorems for n-point functions
I Express n! Wightman correlators in terms of (n− 1)! spectral functions
I Theorem: can choose as independent spectral functions the following:

〈
[
· · ·
[[

On, Oπ(1)

]
, Oπ(2)

]
, · · · ,Oπ(n−1)

]
〉β

for π ∈ Sn−1
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